
Deployment automation for web  
portal components with metadata 

Juri Urbainczyk 
iteratec GmbH 

Theodor-Heuss-Strasse 55 
D-63225 Langen, Germany 

 
Abstract: The infrastructure of a complex web portal consists of many different technical components. This paper is 
based on experience in an industrial web portal project of a German car manufacturing company. The project has 
to manage an increasing number of parallel portal environments. The paper shows, how the portal components can 
be extracted from one environment and deployed to other environments automatically. Further, it details how they 
can be archived, in order to reuse them later in the same or another environment. The paper details how the system 
deals with the complex dependencies between the components and how to separate the environment-specific infor-
mation from the components. Furthermore, it describes the implementation of the concept.  
Keywords: web portal, deployment, metadata, automation, configuration management, scripting. 

��������	
������
A web portal [1] is a web site or service that offers 
a broad array of resources and services to custom-
ers or users. Usually the portal integrated many 
web applications that implement the respective 
services or manage the access to the resources. 
Typically the users of the portal don’t have to 
authorize each time they use another one of the 
web applications, because the portal itself handles 
single sign-on and session security context. The 
portal employs a complex infrastructure to fulfill 
these requirements. The infrastructure itself con-
sists of various subsystems, which often are web 
applications again. Usually, there are subsystems 
which handle the authentication, others are re-
sponsible for displaying personalized menus to the 
user (authorization) while others again handle 
content or manage access to common resources. 
In this paper, these subsystems are referred to as 
portal components. In literature, there are many 
different definitions of the notion component 
[2,3]. In our view, portal components are inde-
pendent subsystems, which fulfill separate tasks 
for the portal and which access each other and can 
be accessed by other applications using clearly 
defined interfaces. 
Using that notion of component, it is possible to 
define, which components make up the infrastruc-
ture of the portal at a certain time. The compo-
nents have certain dependencies, i.e. that they 
reference and use each other in a way which can 
also be documented. But this infrastructure 
changes over time, when new versions of compo-
nents are installed and old ones are deleted. Some 
components are removed completely or are re-

placed by others. The dependencies between the 
components change over time as well. E.g. the 
dependency to a database may only occur in the 
newest version of a component. 
The number and different nature of the compo-
nents, their dependencies and above all the fact 
that all of this constantly changes, leads to the 
large complexity of the portal infrastructure. This 
paper is about how to manage this complexity. 
Chapter 2 introduces the business background for 
this paper and describes the portal and its subsys-
tems. Chapter 3 clarifies the notions environment 
and market. Then, in chapter 4 the difficulties 
which arise from these circumstances are de-
scribed. Chapter 5 states the objectives which 
were essential for this work. Chapter 6 explains 
how these objectives shall be achieved on a tech-
nical level. The following chapter 7 details the 
processes of archiving and deployment, as they 
are performed by the automating software. In 
chapter 8 we present the results and in the last 
chapter, we give an outlook on future work. 


��������������
The experiences for this report were gained in a 
web portal project of a German car manufacturing 
company. The portal, which was build up during 
that project, is one of many different web portals 
with identical infrastructure, i.e. they employ more 
or less the same components. The project devel-
oped the conceptional and technical concepts, 
employing only standard J2EE [4] architecture 
and JSP technology [5] for the portal (s. picture 
1). Our group build up the infrastructure of the 
portal by configuring the purchased software or 
steering the internal software projects. Moreover, 



during development we were responsible for 
maintaining and extending the portal. 
The portal integrates applications and content for a 
specific group of users, which is working world-
wide. Applications are only loosely coupled with 

the portal: the application can access resources of 
the portal but not the other way round. The portal 
only references the applications by calling a URL. 
Additionally, the portal offers infrastructure ser-
vices to the applications, which are integrated into 
the portal. These services are: 
��Single sign-on, authorization, authentication 

and creation of a common security context. 
��Access to user data like roles and permissions. 
��Management of user and permission data. 
��Administration of the portal’s infrastructure. 
��Further services like bookmarking and site-

map. In this case “bookmarking” refers to 
storing the users favorite links in the portal’s 
database (not the browser’s).  

To realize these services the portal utilizes various 
subsystems: user and permission data is stored in a 
LAAS (LDAP Authentication and Authorization 
Service) database [6]. To administer the data, cus-
tom web applications are used, which access the 
LAAS on the intranet. Authentication is realized 
by an enterprise application management (EAM) 
tool, which was purchased from an external com-

pany. This tool installs a plug-in in the web server 
and intercepts all HTTP requests. Only requests, 
which are equipped with an authenticated security 
context, can pass. If no security context is found, a 
login dialog is displayed. During logon the user 

data is read from the LAAS database. 
Authorization is realized using two Java applica-
tions, which were developed internally. One of 
them is responsible for the construction of the 
portal’s menu, the other is used by other applica-
tions and other portal components to access com-
mon security data, like roles and permissions. 
Every user is displayed an individual menu, which 
is derived from his permissions, which are again 
read from LAAS. Menus, which the user is not 
able to access, are not offered to him at all. The 
menu structure is stored in an Oracle database, 
which is accessed by the respective menu builder. 
With a Java Swing application, which was build 
in-house, the menu structure can be administered. 
There are further tools, which are needed to run 
the portal and its infrastructure, e.g. to migrate 
menus from one environment into another. 
The portal features special HTML and JSP files, 
which are needed to customize the portal’s GUI. 
Further files realize the log off from the portal. 
The login is performed using functionality of the 
above EAM tool. Each portal has its own login 
pages, which again can be specific to certain envi-

Portal-Server

HTTP

Web-Server

JDBC
Application Server
WLX

Menu Builder

App Server
Proxy Portal DBPortal DB

HTTPSBrowser

EAM-Server

EAM
Agent

Security Framework

Application

Web-Server

EAM
Agent

App Server
Proxy

HTTPS

Other
System

HTTP

LAAS

App Logic

Security Framework

EAM-Tool

Portal Infrastructure

Example
Application

File-
Server

EAM-API

EAM-API

JNDI

LDAP

JNDI
LDAP

LDAP

Picture 1: The architecture of the portal and an integrated application 



ronments. The same is true for the change-
password function. 

������������������	�����
�����
The worldwide users of the portal are divided into 
many different sub-groups, which are organized 
by regional characteristics. These regions are 
called “markets”. The markets usually use differ-
ent applications or at least different versions of 
applications and therefore, each market needs a 
totally separate instance of the portal. There are at 
least one production and integration environment 
per market. Considering all markets the portal will 
finally end up with 80 or more environments. 
Each of these environments is built from the same 
components. The components however can exist 
in different environments with different versions. 
E.g. in any environment there can be a different 
version of the EAM tool or the menu builder. 

Every environment could set up the components 
differently, as well. 
Moreover, every market can show an individual 
menu structure, leading to a different content of 
the database. Integration and production environ-
ments differ as well, because the applications are 
integrated in the integration environment first and 
moved to production later on. Additionally, there 
is certain content, which only exists in production, 
like news and the bookmarks of the portal’s users. 
Therefore, every environment has a totally differ-
ent infrastructure, consisting of an individual 
group of components, which is potentially set up 
differently (s. picture 2). 

���������
������
When our project started we began just with one 
market, containing only two environments. When-
ever a new environment or, rarely, a new market 
had to be installed we did that manually. At first, 

we installed the web and application servers and 
the databases. Then we received the current ver-
sions of the components from the developers and 
deployed them. After that we adjusted the envi-
ronment specific settings of the components by 
manually editing their files or database tables. All 
in all, this could take days, or weeks if we also 
count the time to wait for licenses. 
When we deployed a new component to a certain 
environment, we had to manually check which 
version was installed. Moreover, we had even to 
look up the versions of all other components, be-
cause we had to guarantee that they would fit to 
the new one. Since it was not evident what com-
ponent was dependent on what other, we often had 
to figure that out as well. 
For what is worse, the components were not easily 
to be separated from another. Some components 
contained data, which was part of another compo-
nent, like a hard coded name of a web application. 
I.e. that the deployment of one component could 

have profound consequences on others. 
Furthermore, there were also many dependencies 
between the components and the environment in 
which they were deployed. Some components had 
to be set up especially for the environment using 
data like the cluster name, IP addresses, database 
connect strings, port numbers and so on. 
This process was very error-prone and time-
consuming. When the number of markets and 
environments increased, it became evident that 
this process was no longer feasible. The portal 
infrastructure just was too complex and the envi-
ronments were too abundant to manage them 
manually. 
To sum it up, we had the following problems: 
��We didn’t know which components were in-

stalled 
��The dependencies were not documented 

Market A
Integration Environment

Market B
Production Environment 

Market C
Integration Environment

Market D
Production Environment

2.0

1.2 3.0

1.1 1.0

1.2

1.0

1.1 1.0

1.1 1.0

1.0

1.0

1.2 1.0

1.1 1.0

1.1

1.1 1.0

1.1 1.0

1.0

Picture 2: Environments having different components and component dependencies. 



��There was no clear separation between com-
ponents 

��The components were polluted with environ-
ment data 

These facts became problems when the number of 
environments crossed a certain limit, because we 
were no longer able to install and manage the in-
frastructure of the portal in time. 

��� !���������
It became clear, that we needed an automated 
management of portal components and environ-
ments. Every environment consists of a configura-
tion of components, i.e. a defined set of compo-
nents with defined dependencies. What needed 
above all was control over the configurations of 
our environments. That should help us to achieve 
the following aims: 
��We want to install new environments within 

one day or faster. 
��It must be possible to determine the state of an 

environment quickly in terms of which com-
ponents are installed in what versions. 

��To do that, it must be possible to identify 
every component with its name and its ver-
sion. The version must be unique and related 
to a source code version of the component. 

��We must be able to quickly build up a prop-
erly running environment with a defined state 
of components. That can also be a old state, 
which existed in a different environment some 
time ago. This is necessary e.g. in order to rec-
reate errors which only occur with certain 
combinations of components. 

"��#��������
At first we had to define what exactly our compo-
nents were, because at that moment they were not 
at all clearly separated. The following conditions 
must hold for a portal component: 
��The subsystem is developed further independ-

ently of the others – it forms its own versions. 
��The subsystem may be installed in different 

versions in separate environments.  
These conditions lead to the component hierarchy, 
which is shown in picture 3. Transitive dependen-
cies are not displayed there. 
The components in dark green color are included 
in our approach. These are the following: 
��The portal files, which are used for login, 

logout and customization for different mar-
kets. 

��The portal tools, which are needed e.g. to 
transport menu data between environments. 

��The menu builder application, which con-
structs personalized menus. 

��The menu admin, which is needed to adminis-
ter the menu structure. 

��The application registration, which is used to 
integrate new applications into the portal. 

��The configuration component, which store 
configuration data for other components. 

��The security framework, which is used to ac-
cess the LAAS database and security func-
tionality. 

The menu structure and the news and bookmark-
ing components are different, because they store 
runtime data and therefore need special considera-
tion, which will certainly happen in a next step. 
Web and application servers were not considered 
in our concept. Due to the organization of the 
project those servers are not installed by our 
group. In our view, they belong to the runtime 
system of the portal. Every environment is based 
on potentially different settings of the portal’s 
runtime system. The following parts belong to the 

runtime system: the web and application server, 
the Oracle database and the LAAS database. 
In order to achieve the above objectives, we de-
cided on the following points: 
��The environment data must be separated from 

the components. This is necessary in order to 
exchange components between environments. 

��The dependencies between the components 
must be known and documented. This is nec-
essary in order to automate there deployment. 

��There must be a global repository for compo-
nents. A component with a certain version can 
be extracted from the repository any time. 

LAAS

Menu Builder

Menu Structure Portal Files
(JSP, HTML)

EAMWeb Server &
App Server

Configuration

Security 
Framework

News & 
Bookmarking

Application 
Registration

Menu Admin

Portal Tools

Picture 3: The component hierarchy 



##MARKET_LC## = XY 
##MARKET_BS## = /dportal/##MARKET_LC## 
##SMLOGINDOCROOT## = . 
##ENV## = INT 
##PERMISSION_SERVER ## = permserv2 
##PERMISSION_PORT## = 7843 
##MULTICASTIP## = 192.0.1.111 
##ADMINSERVER_NAME## = pwpstep3 
##ADMINSERVER_PORT## = 9115 
##ADMINSERVER_PORTSSL## = 9223 
##SERVER1_NAME## = pwpstep3 
##SERVER1_LISTENADDR## = 140.23.23.1 
##SERVER1_PORT## = 1123 
##SERVER1_URL## =http://##SRVR1_NAME## 
##SERVER2_NAME## = pwpstep4 
##SERVER2_LISTENADDR## = 131.110.45.22 
##SERVER2_PORT## = 9928 
##SERVER2_URL## =http://##SRVR2_NAME## 
##APPID## = dportal_##MARKET_UC## 
##LDAP_SRVR## = idbldap.fra 

<clusterconfiguration> 
<machine name="##CLTR_SVR1_NAME##"> 
<url>http://##CLR_SVR1##:##CLR_SVR1_PORT#
#</url> 
</machine> 
<machine name="##CLW_SVR2##"> 
<url>http://##CLR_SVR2_NAME##:##CLR_SVR2_
PORT##</url> 
</machine> 
</clusterconfiguration> 

��There must be a mechanism to store an exist-
ing configuration (archiving) into the reposi-
tory and to retrieve it from there at a later time 
(deployment). 

The archiving and the deployment should be real-
ized through the use of UNIX shell scripts. The 
global repository for the components should be a 
dedicated directory. It would be accessible for all 
relevant user accounts and from all machines, 
which are involved with the portal. The archives 
of the respective components should be stored 

there as tar files. 
In order to get the components manageable, their 
structure had to be changed: every component has 
to describe itself and its configuration settings 
with metadata [7], i.e. information on itself. Thus, 
a component now consists of three parts: two files, 
which hold the metadata and the instance data of 
the component itself. 
The first of the files is called id file and contains 
the following information: the name of the com-
ponent, its version and a list of all objects, which 
belong to the component. The id file has XML 
syntax can be regarded as a kind of deployment 
descriptor [8] for the component.  
The id file describes the location of all objects of 
the component in relation to the installation loca-
tion of the component. This is helpful with archiv-
ing and restoring the component. For every object 
the attribute type is stored [9]. It describes, which 
type of object it is, e.g. files or database objects. 
This information is necessary to deduce which 
tools are needed to archive or restore a compo-
nent. If the object is a database object, oracle ex-
port mechanisms are used. The version number 
stands for a concrete version of the component. 
If a component is deployed to an environment its 
id file is stored at a dedicated place. There you can 
find all id files of all components installed in this 
environment. This is a precondition in order to 
save a configuration automatically. 
The decision, to work with the id file, was made, 
when it became clear, that there was partial over-
lap in the file structure of the components. if one 

just archived the directory tree of a component, 
one would most certainly also include files of 
other components, which is not feasible. 
There is also a second file with metadata, the so-
called config file. It describes the location of all 
environment-dependent data in the objects of the 
component. This is needed for normalization of 
the component. A normalized component does not 
contain any environment-dependent data [10]. 
This is achieved by extracting all environment-
dependent data from the objects of the component 
and then replacing it by tags (s. listing 1). The 
normalization is performed when the component 
is archived, i.e. an installed component is not 
normalized.  
Nonetheless, during deployment the environment 
data is needed. Therefore, all information specific 
to one environment is gathered in one file, the 
environment properties file. One such file exists 
for every environment (s. listing 2). In this file 
you find the concrete IP addresses, port number, 
machine names etc. of the environment’s runtime 
system. This step decouples the components from 
the underlying runtime system by removing the 
dependencies from the components and transfer-

ring them to the environment properties file. 
We also discussed another option, which would 
have worked without config file: why not simply 
replace the old environment-dependent data with 
the correct and new data when deploying the com-
ponent? This could be possible, but would have 
meant extensive scanning algorithms and 
techniques in order to detect the environment-
dependent data. E.g. one could have assumed, that 
numbers of a certain structure, separated by 
points, are IP-addresses, which would have to be 

Listing 1: Environment properties 

Listing 2: Tags replacing environment data 



replaced by the correct IP-address. But this 
seemed to be too much work and still too error-
prone to be feasible.  
After executing the above steps, the components 
are clearly separated from each other and from the 
environment data. Now, we could implement the 
automated archiving and deployment procedures.  

$�����������������

Archiving 
The archiving (the process of extracting the com-
ponents from the environment and storing them in 
the repository) is realized by several scripts. The 
script always works with respect to one environ-
ment, the so-called source environment. Either it 
archives all components, i.e. the whole environ-
ment, or it archives only one certain component. 
The control information is passed by arguments to 
the script when invoking it. 
The script performs the archiving with the follow-
ing steps: 
1. The directory with the metadata of the in-

stalled components is read. The script decides 
for every component if it has to be archived. If 
the component is already in the global reposi-
tory with exactly the same version then it will 
be skipped. 

2. The necessary components are copied to a 
temporary directory – the so-called staging di-
rectory. All further work is done there on the 
copy. Thus, the archiving does not influence 
the source environment at all. 

3. The components are normalized one after the 
other. Now the information from the metadata 
is used to remove the environment dependent 
data from the objects. The environment spe-
cific data is replaced by tags. 

4. Now the components are stored in the archive. 
Every object of the component is treated as 
suitable for its type, which is read from the 
metadata. Eventually, all files are packed with 
the UNIX tar command to one big archive. 
The tar file gets a name, which contains the 
name of the component and its version. The 
result is a complete component archive. 

5. The tar file is stored in the global repository. 
Then all files generated in the process are de-
leted from the staging directory. 

6. The information about the archived configura-
tion (which components were installed with 
what version) has to be archived as well. To 
this end, another file is generated. It contains 
the following information: the versions and 
names of the component archives contained, 

name and path of the source environment, date 
and time of the archiving, the account name of 
the user who started the archiving and the ma-
chine name where it was executed. This file is 
stored in the repository together with the file 
containing the technical settings of the envi-
ronment. 

As result of the process, there is a set of one or 
more tar files in the repository. Every tar file 
represents one archived component. Additionally, 
there are two files containing information about 
the state of the source environment at the time of 
archiving. 

Deployment 
The deployment of components has to be started 
manually, since there must be a concrete reason 
for it. E.g. a totally new environment for a new 
market has to be installed.  
Like the archiving, so is also the deployment real-
ized by scripts. One target environment and one 
configuration must be passed as arguments. The 
components, which make up the given configura-
tion, are read from the global repository. It does 
not matter, if the components got there by an ear-
lier archiving or if they are newly developed and 

stored to the repository for first use. 
If an already existing environment shall be over-
written with a new configuration, it has to be ini-
tialized before. Especially the application server 
has to be shut down, which can be done automati-
cally with a separate script. During deployment of 
the new configuration the following steps are per-
formed: 
1. The script determines the components to be 

installed from the given configuration (s. pic-
ture 4). 

2. The necessary component archives are looked 
up in the repository. If they are not found, the 
process is aborted here. 

Staging Directory

Runtime Environment

Component Repository

Archived 
Component

Get 
Component

Normalized 
Component

Configured 
Component

Environment
Properties

Configuration
Information

Deployed 
Component

Configure
Component

Deploy 
Component

Deployment
Information

Picture 4: The deployment process 



3. All needed component archives are copied 
from the repository to the staging directory. At 
this step, the components are still normalized. 

4. In the staging directory the components get 
denormalized. This is achieved by looking up 
the tags generated at archiving time and re-
placing them with environment specific data. 
The script reads the environment specific data 
from then environment properties file, which 
is passed as argument. 

5. Eventually, the denormalized components are 
deployed to the target environment. It’s not 
necessary to follow a certain sequence when 
deploying. 

After this procedure the environment already is 
fully functional. All components are exactly at 
that state with which they were archived to the 
repository. The application server can be started 
up and the portal can be used.  

%��&��
����
Using this archiving and deploying procedure 
described above makes it possible to install a new 
environment just by „pressing a button“. Thus, the 
amount of work necessary to build up a new mar-
ket is reduced from days to just an hour or even 
less. The results are reproducible and can be re-
peated as often as required. Now we have the pos-
sibility to install many environments with the 
same configuration. Furthermore, we are able to 
react quickly to customer requirements. Changes 
to environments can be done in minutes. If it is 
necessary to install a different version of a com-
ponent in order to remove an error, this can be 
done very quickly. All in all, the maintenance of 
the environments would not be possible without 
the deployment automation.  
Furthermore, we now have a possibility to revive 
old configurations, which were formerly archived. 
This is very helpful when looking for errors or 
when trying to answer support requests. 

'��(
�
���)����
Until now the dependencies between the compo-
nents cannot be checked when deploying, because 
the necessary information is not available. It 
makes sense to define the dependencies in the 
metadata, e.g. in the id file. If this information 
would be accessible, the deployment script could 
assert that the given dependent components would 
be installed as well. If this condition could not be 
met for all components, the process could abort 
with an appropriate error. 

As a next step we also have to think of archiving 
and managing of portal contents, like the menu 
structure and the news and special runtime data 
like the bookmarks. The menu structure poses one 
special problem: the numbering of the versions 
must be able to cope with variants (parallel ver-
sions).  
The management of the already archived compo-
nents must be enhanced as well. Until now the 
normalized components are stored as tar files in a 
global directory. In the long run the components 
shall be stored in a true CM system, like Con-
tinuus. The benefit would be, firstly, the auto-
mated version control. Secondly, the component 
could be linked directly to the related version of 
its source code. 

�*�� &����������
[1]: Enterprise Portale JavaMagazin 12.2002 
[2] Gruhn, Thiel: Komponentenmodelle 
DCOM, Javabeans, Enterprise Java Beans, 
CORBA Addison-Wesley - Pearson Education 
[3] Cunningham Component Definition 
http://c2.com/cgi/wiki?ComponentDefinition 
[4] Java 2 Platform Enterprise Edition Tech-
nology 
http://java.sun.com/j2ee/index.jsp 
[5] Java Server Pages Technology 
http://java.sun.com/products/jsp 
[6] LDAP Definition 
http://www.webopedia.com/TERM/L/LDAP.html 
[7] Metadaten 
Deklarative Programmierung durch erweiterbare 
Metadaten,  Object Spektrum 02/2003 
[8] Deployment Descriptor 
Enterprise Java: Konfigurationsbeschreibung für 
EJB-Komponenten,  Java Spektrum 06/1999 
[9] Zhichen Xu, Magnus Karlsson, Chunqiang 
Tang, Towards a Semantic-Aware File Store 
HP Laboratories 
[10] Donald D. Cowan, Carlos J. P. Lucena: 
Abstract Data Views: An Interface Specifica-
tion Concept to Enhance Design for Reuse 
IEEE Transactions on Software Engineering ar-
chive Volume 2, 1995 
 
 
 
 
 


